
A Deontic Logic of Knowingly Complying
Carlos Areces, Valentin Cassano, Pablo F. Castro, Raul Fervari & Andrés R. Saravia

UNC, UNRC & CONICET, Argentina; GTIIT, China

Abstract
We introduce a logic for representing the deontic notion of know-

ingly complying –associated to an agent’s conciousness of taking a nor-
mative course of action for achieving a certain goal. Our logic features
operators:

• for describing normative courses of actions, and

• for describing what each agent knowingly complies with.

We provide:

• a sound and complete axiom system,

• the computational complexity of its satisfiability problem, and

• an extension with an additional operator for capturing abilities (with
a sound and complete axiom system).

A Motivating Example

EMERGENCY PROCEDURE

− FIRE KEEP CALM

PULL FIRE ALARM,
FROM A SAFE LOCATION

CALL 999 (FIRE BRIGADE)

− SMOKE

− EXPLOSION

Evacuate: close doors behind, use only stairs or ramps.

If unsafe to evacuate: shut door, block cracks, stay low near window.

Figure 1: Fire Emergency Evacuation Plan

The main norms are:

• In the event of a fire/smoke/explosion, sound the nearest fire
alarm, move to a safe location, and call the Fire Brigade.

• When evacuating close doors behind, use only stairs or ramps
(never the elevator)

• Remain calm in any possible situation.

The DLKc logic

Definition 0.1. Let Prop be a set for proposition symbols, and
Agt a non-empty finite set of agent names. The language of DLKc
is:

φ := p | ¬φ | φ ∨ ψ | N(ψ, φ) | Kci(ψ, φ),

where: p ∈ Prop and i ∈ Agt. Aφ = N(¬φ,⊥) and Eφ =
¬A¬φ. Intuitively, N(ψ, φ): “there is a normative course of ac-
tion that brings about φ given ψ”; Kci(ψ, φ): “agent i knowingly
complies with φ given ψ”.

Definition 0.2 (LTS). A LTS is a tuple L = ⟨S,R,V⟩ where:

• S is a non-empty set of states;

• R = {Ra ⊆ S2 | a ∈ Act}; and

• V : S → 2Prop is an assignment function.

Definition 0.3 (Plans). Let Act a set of basic actions, π ∈ Act∗.
For 0 ≤ k ≤ |π|, πk is the initial segment of π of length k and
π[k] is the kth element of π.

Definition 0.4 (Strong Executability). Let L = ⟨S,R,V⟩ be an
LTS, s ∈ S, π ∈ Act∗. π is SE at s iff for all k ∈ [0, |π| − 1]
and all s′ ∈ Rπk(s), implies Rπ[k+1](s

′) ̸= ∅. SE(π) = {s ∈ S |
π is SE at s}. Π ⊆ Act∗, SE(Π) =

⋂
π∈Π SE(π).

Definition 0.5 (U-NLTS). An uncertainty-based normative LTSs
(U-NLTS) is a tuple M = ⟨S,R,V,U,N⟩ where:

• L = ⟨S,R,V⟩ is an LTS;

• N ⊆ Act∗ s.t. there is π ∈ N with SE(π) = S;

• U : Agt → 22
Act∗

satisfies:

– ∅ ∈ U(i), and

– for all {Π,Π′} ⊆ U(i), Π ̸= Π′ implies Π ∩ Π′ = ∅.

Definition 0.6 (Semantics). Let M = ⟨S,R,V,U,N⟩ be a U-
NLTS, s ∈ S, φ and ψ formulas:

M, s ⊩ p iff p ∈ V(s),
M, s ⊩ ¬φ iff M, s ̸⊩ φ,
M, s ⊩ φ ∨ ψ iff M, s ⊩ φ or M, s ⊩ ψ,
M, s ⊩ N(ψ, φ) iff exists π ∈ N such that

(i) JψKM ⊆ SE(π) and

(ii) Rπ(JψKM) ⊆ JφKM,

M, s ⊩ Kci(ψ, φ) iff exists Π ∈ U(i) such that

(i) Π ⊆ N,

(ii) JψKM ⊆ SE(Π), and

(iii) RΠ(JψKM) ⊆ JφKM,

where JχKM = {s ∈ S | M, s ⊩ χ}.

A Motivating Example (cont.)

Fig. 1 can be represented as an U-NLTS M = ⟨S,R,V,U,N⟩ s.t.
the LTS L part is modelled as in Fig. 2:
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Figure 2: An LTS for the FEEP.

Where the basic actions are:

keep.calm, pull.alarm, call.999,

use.stairs, use.ramp, use.elevator.

The plans considered are:

π0 = keep.calm
πr = pull.alarm; use.ramp; call.999
πs = pull.alarm; use.stairs; call.999
πe = pull.alarm; use.elevator; call.999

And each of the states in S represents a different situation:

• s1: a fire ocurrs (f ), there is the capacity to follow the FEEP (c).

• s2: a fire ocurrs (f ), there is no capacity to follow the FEEP (¬c).

• s3: a safe location has been reached (s), there is no fire (¬f ).

Thus, SE(π0) = S, SE(πr) = SE(πs) = {s1}, and SE(πe) = ∅
and the set of normative plans is N = {π0, πr, πs}.

Suppose we have two agents:

• i: has taken an occupational safety course and knows the dif-
ference between using stairs/ramps and using the elevator.

U(i) = {∅, {πs, πr}, {πe}}

• j: has not taken the course and considers all possible ways of
exiting the building might be equally good.

U(j) = {∅, {πs, πe, πr}}.

The following properties hold in M

(1) M, s1 ⊩ A(s→ ¬f ) (3) M, s1 ⊩ N(f ∧ c, s)
(2) M, s1 ⊩ Ef (4) M, s1 ⊩ Kci(f ∧ c, s)

(5) M, s1 ̸⊩ Kcj(f ∧ c, s)

(1) and (2) are immediate. As a witness for (3) we can take the
plan πs. As a witness for (4) we can take the set {πs, πr} ∈ U(i).
Failure of (5) obtains from the fact that {πs, πe, πr} ⊈ N and
Jf ∧ cKM ⊈ SE(∅) = ∅.

Axiomatization & complexity

Axioms:

Taut ⊢ φ for φ a propositional tautology
DistA ⊢ A(ψ → φ) → (Aψ → Aφ)
TA ⊢ Aφ→ φ

4KcA ⊢ Kci(ψ, φ) → AKci(ψ, φ)
5KcA ⊢ ¬Kci(ψ, φ) → A¬Kci(ψ, φ)
4NA ⊢ N(ψ, φ) → AN(ψ, φ)
5NA ⊢ ¬N(ψ, φ) → A¬N(ψ, φ)

KcN ⊢ Kci(ψ, φ) → N(ψ, φ)
DN ⊢ N(φ,⊤)
KcA ⊢ (A(ψ → χ) ∧ Kci(χ, ρ) ∧ A(ρ→ φ)) → Kci(ψ, φ)
NA ⊢ (A(ψ → χ) ∧ N(χ, ρ) ∧ A(ρ→ φ)) → N(ψ, φ)
Kc⊥ ⊢ Kci(⊥,⊥)

Rules:

⊢ ψ ⊢ (ψ → φ)
⊢ φ (MP) ⊢ φ

⊢ Aφ
(Nec)

Table 1: Axiom system DLKc for DLKc over U-NLTSs.

Theorem 1. The axiom system DLKc in Tab. 1 is sound and
strongly complete for DLKc over the class of all U-NLTSs.

Proposition 0.1. The model checking problem for DLKc is in P.

Theorem 2. The satisfiability problem for DLKc is NP-complete.

Reasoning About Abilities
Definition 0.7. The language of DLKc+ is defined by:

φ := p | ¬φ | φ ∨ ψ | S(ψ, φ) | N(ψ, φ) | Kci(ψ, φ),

where: p ∈ Prop and i ∈ Agt. Intuitively, S(ψ, φ): “there is a
course of action that brings about φ given ψ”.

Definition 0.8. Let M = ⟨S,R,V,U,N⟩ be a U-NLTS, s ∈ S, ψ
and φ formulas:

M, s ⊩ S(ψ, φ) iff exists π ∈ Act∗ such that

(i) JψKM ⊆ SE(π) and

(ii) Rπ(JψKM) ⊆ JφKM.

4SA ⊢ S(ψ, φ) → AS(ψ, φ) NS ⊢ N(ψ, φ) → S(ψ, φ)
5SA ⊢ ¬ S(ψ, φ) → A¬ S(ψ, φ) EmpS ⊢ A(ψ → φ) → S(ψ, φ)

CompS ⊢ (S(ψ, χ) ∧ S(χ, φ)) → S(ψ, φ)

Table 2: Additional axioms for DLKc+.

Theorem 3. The axioms and rules in Tabs. 1 and 2 yield a sound
and strongly complete axiom system for DLKc+ over the class of
all U-NLTSs.

Future work
• Characterize the exact complexity of the satisfiability poblem

of the extended logic DLKc+.

• Establish different levels of responsibility for the agents us-
ing the relation between the set of plans U(i) of each agent
and the set of norms N.

• Impose new restrictions on the different components of the
model (or weakening them), and obtain new logics.

Acknowledgements
We thank the reviewers and the PC member for their con-
structive comments and suggestions. This work is par-
tially supported by ANPCyT-PICT-2020-3780, CONICET PIP
11220200100812CO, the EU Grant Agreement 101008233
(MISSION), and by the Laboratoire International Associé SIN-
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